745 research outputs found

    Bulk properties of nuclear matter in the relativistic Hartree approximation with cut-off regularization

    Get PDF
    A method of cut-off regularization is proposed to evaluate vacuum corrections in nuclear matter in the framework of the Hartree approximation. Bulk properties of nuclear matter calculated by this method are a good agreement with results analyzed by empirical values. The vacuum effect is quantitatively evaluated through a cut-off parameter and its role for saturation property and compressional properties is clarified.Comment: PACS numbers, 21.65.+f, 21.30.+

    Nucleon mean free path in nuclear matter based on nuclear Schwinger-Dyson formalism

    Get PDF
    A mean free path of nucleon moving through nuclear matter with kinetic energy of more than 100MeV is formulated based on the bare vertex nuclear Schwinger-Dyson (BNSD) method in the Walecka model. The self-energy which is derived from the higher order diagrams more than the forth order includes the Feynman part of propagator of energetic nucleon and grows up rapidly as an increase of kinetic energy. To avoid too large growth of these diagrams, meson propagators are modified by introducing some form factors to take account of a internal structure of hadron. It is confirmed that the mean free path calculated by the BNSD method agrees good with experimental data if a reasonable form factor is chosen, i.e., a dipole (quadrupole) type of form factor with a cut-off parameter about 750 MeV \sim 1000 MeV (1200 MeV \sim 1500 MeV)

    Vacuum Effects and Compressional Properties of Nuclear Matter in Cutoff Field Theory

    Full text link
    Including the vacuum effects, the compressional properties of nuclear matter are studied in the cutoff field theory. Under the Hartree approximation, the low-energy effective Lagrangian is derived in the framework of the renormalization group methods. The coefficients are determined in a way where the physical results hardly depend on the value of the cutoff which is conveniently introduced into the theory. It is shown that, to reproduce the empirical data of the nucleus incompressibility, the compressibility of the nuclear matter is favorable to be 250\sim350MeV.Comment: PACS numbers, 21.65.+
    corecore